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NERVE PULSE INTERACTIONS

Alwyn C. Scott
Center for Nonlinear Studies
Los Alamos National Laboratoris~s
Los Alamos, New Mexic~  B7545 USA

INTRODUCTION

Traditionally the neuron hos been viewed as a linear threshold unit which
generates an output when some weighted sum of the inputs exceeds a certain value,
Over the pest two decades, however, several suggestions have been made for mech-
anisms r; which the neuron might perform more sophisticated forms of information
processing, such as: Boolean logic at dendritic branches [1-8], Time code to space
code trauslations on the axonal tree [9-14), and Dendrodendritic interactions [15].
Such suggestions have led Wsxman to propse the concept of a "multiplex neuron" [16]
which bears about the same relationship to a linear threshold unit as does a "chip"
to a '"gate" in modern integrated circuit technology.

Certainly au important sim of neurcscience is to understand the true functional
roles played by neurons. A first step in this direction is to ask what it is that a
neuron can do. This is a question of biophysics. From this spectrun of possible
modes of neuronic behavior, one can then ask the biological question: What is it
that a particular neuron does do?

Here I review some recent experimental and theoretical results on mechanisms
through which individual nerve pulses can interact. Three modes of interactions are
considered: 1) Interaction of pulses as they travel along a siagle fiber which
leads to velocity dispersion, 2) Propagation of pairs of pulses through a branching

region leading to quantum pulse code transformations, and 3) Iuteraction of pulses

on parallel fibers through which they may form a pulse assembly. This notion is

analogous to Hebb's concept of a '"cell assembly" [17], but on a lower level of the
neural hierarchy. It may help to explain the extreme sensitivity of neural systems
to nonionizipg electrxomagnetic fields [18,19).

VELOCITY DISPERSION

Consider the "twin pulse" experiment sketched in Fig. 1. The times t and ty
ar.: vhen the firat and second pulscs, respectively, pass the first electrode. The
time: t2 and t, are similarly related to the second electrode. Thus the average
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Fig. 1. Experimental details of
twin pulse experiment on giant axon of squid.

time interval between the two pulses is measured as

1
Te i(ta + t3 -t, - tl) , (1)
and the ratio of the speed of the second pulse, 92, to that of the first pulge, 61,
is
R=x 62/01
t, -t
o (2)
4 3

Actually (2) is aot exact because the speed of the sucoand pulse is nolL constant. A
small correction to account for this effect is discussed in {20]. 8ince the time



differences for a squid giant axon are a faw milliseconds and can be m( asured with
an rms accuracy of about 0.003 milliseconds, (1) and (2) Jdetermine the velocity

dispersion tunction, R(T), with an accuracy of a few per cent.

A calculation of R(T) can be made by noting that the leading edge of the
second pulse propagates into the tail of the first prlse. Since all parameters
that describe the axon are identical for the two pulses, the velocity dispersion

function is readily ralculated as (see [20] for details)

R(T) = Lt X (3)

1 - V(T)/V
V(T T
(1 - _Ll) 1+ K[(l F V(D)7

where VT is the threshold voltage of an isolated pulse, and V_ and V{T) describe the

tail of an isolated pulse as is indicated in Fig. 2.

Smv./cm.

2ms./cm. ——

Fig. 2. The tail of a typical isolated pulse on a squid gisnt axon. The
time T = 0 indicates when the pulse voltage passes through threshold (dv/dT = maximum value).



In (3) the parameter

K = g, t/c

(4)

where T is the time constant for exponential rise of the leading edge bclow thresh-

old and c/go +5 the time constant of a resting membrane (= 1 miilisecond).

In Fig. 3 a measure-
ment of R(T), from (1) and
(2), is compared with cal-
crlat ‘ons from (3). There
. .e four calculations be-
cause the tail of an iso-
lated pulse was measured
on both electrodes before
and after the measurements
of R(T).

The measurements dis-
played in Fig. 3 confirm
previous measurements by
Donati and Kunov [21] and
are in agreement with re-
cent numerical studies of
the Hodgkin-Huxley equa-
tions by Miller and

Rinzel [22]). Psrticularly &

interesting is the "over-
shoot" when R < 1 and the
second pulse is actually
going faster than the first.
From the neasurements
one can define T1 as the
pulse spacing at which R(T),
determined from (1) and (2),
is equal to unity Like-
wise from the calculations
one can define To as the
pulse spacing at which R(T),
determined from (3), is
equal to upnity. In Fig. 4

a comparison of T, with

1
To is presented for

T
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Fig. 3. Comparison of measurements and calcu-
lations of the velocity dispersion function R(T).



measurements on twelve giant squid axons where the error bars are defined as indi-

cated on Fig. 3. Figure 4 indicates
T, =T (5)

within the accuracy of the measurements and calculations. However (3) implies that
To is the time at which

the tail crosses through

zero; i.e., V(To) =0 (see

also Fig. 2). However cal-

cuvlations by John Rinzel 18 —r T 1 1T 71 T T T 1 1//
tor the Hodgkin-Huxley equa- - / B
ticns do rot confirm this 16 - /. O

point. He finds [23]) - //// .

14 - =
(o]

Temp (°C) T, (ms.) T, (ms.) i {
18.5 4.77 6.14 172 -
14.0 7.25 8.53 g -

w
b- ~ L l 1

These calculations are plot- g _

ted as '"@' on Fig. 4 and | 7 i

appear to lie below the 5 ;E: _J

experimental da:a although .

this distinction is not E/// F> )

A " | | _L ke l__;l e I L

quite clezr. This dis- L & 8 1C 12 14 16 18

crepancy may arise because
pancy may To(ms) —>

the Hodgkin-Huxley equations

do not account for potassium

build up in _he periaxonal © Fig. 4. Comparison of measured T, and calculated
space [24 25). To for twelve giant squid axons. "The points © are

calculated [23] from the Hcdgkin-Huxley equations.

Apart from theoretical descriptions, it is interesting to consider all the
me~surements of R v T normalized to Tl (made at tLhe Stazione Zoologica between
Japuary and June of 1980) on the "flyspeck" diagram of Fig- 5. Within a few per
ceit, the Gata of Fig. 5 can he represented by the empirical relation

T

R=1+o.1051-1exp 2.4:--;—. (6)
] 1
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Fig. 5. Measured values of R vs T/T,. Note that T1
is defined such that R(T J = 1.

It should perhaps be emphasized that the velocity dispersion implied by (6) is not a
negligible ef{ect. The measurements displayed in Fig. 6, for example, show con-

siderable '"frequency smoothing" between the upstream record A and the downstream

I5-15.5°C . 3.03cm
11 ' — Ty
S —( )
LOL _Geop
0.9t
T o8l
or}
06
0

2 ms/cm——o

T(ms) ———

Fig. 6. Frequency smoothing on a aquid giant axon.



QUANTUM PULSE CODE TRANSFORMATIGNS

We turn now to experimental situations in which a nerve pulse disappears sud-
denly during the course of its propagation. 1 term such effects "quantum" pulse
code transformations to distinguish them from differential transformations related
to velocity dispersion. .J\p obvious place to seek quantum transformations is at the
points where fibers branch (or "bifurcate'"). Branches of the squid giant axon are

found at the locations indicated in Fig. 7.

142 cm -

Fig. 7. Mantle of squid (Loligo vulgaris) showing
scars where giant axons and branches have beea removed.

Some typical branches of the squid gisnt axon are displayed in Fig. 8 from
which a large varistion in the ratios of fiber diameters is ohserved. A measure of
the difficulty experienced by a pulse as it propagates through a branching region ik
expressed by the geometrical ratio (GR) (26] which is easse-tially the total char-
acteristic admittance of outgoiprg fibers divided by that carrying the jincoming pulse.
In terms of fiber diametere (d) it takes the form
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Fig. 8. Typical branches of squid giant axon.

d3/2
out
GR——d?/z— . (7
in
If GR = 1, the "impedance matching" between outgoing and incoming fibers is per-

fect and a pulse proceeds through the branch with a minimun of difficulty. As GF
becomes progressively greater than one, difficulties increase. Numerical calcula-
tions based on the Hodgkin-Hyxley model axon indicate that a solitary pulse will
fail to propagate though a bifurcation with GR greater than sbout 10 [27,28].

A histogram for the GR's observed on branchings of squid giant axons under the
assumption of orthodromic stimulation (i.e. incoming pulse on the main fiber) is
presented in Fig. 9. It should be emphasized that these bifurcations include rather
equal representations of all the different diameter ratios shown in Fig. 8; thus it

seems that in the squid (Loligo vulgaris) nature is attempting to match impedences



for orthodromic conduction

under a variety of geomet- ?
rical constraints. 1 have
carefully examined sixteen MEAN= 107
bifurcations under ortho-
dromic stimulation seeking
evidence for a guantum

change in a temporal 10

T

pulse code before and
after the bifurcation. K//

Although such a change

SO NN

was sometimes observed,

T
N

I failed to find any case 20 e

for which surgical darage

/

or the effects of tiring

7

/
the axon during the search

could be eliminated. This s ;;//
is consistent with the 101 //41;//4
observations reported in //”
Refs. (13 and 14). Ry

-

NUMBER OF UNITS
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It is interesting, E; g#uRCAﬂONS
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dromic stimulation where 05 1.0 1.5

the incoming pulse is on GR —

therefore, to turn to anti- )

one of the daughter branches Fig. 9. Histogram of orthodromic CR's for 10¢
and geometrical ratios branches of the squid giant axon.

greater than unity are readily
obtained. A typical example is bifurcation #20-3-80A which is shown in Fig. 10.
With stimulation (as shown) cn the 340 micron drughter, the GR = 1.7). 1In Fig. 10hb
ave dispiayed the records of a single pulse on both the upstream elecctrode (B) and
the downstream electrode (A). Figure 11 shows that upon stimulation of #20-3-80A
with s pulse rate of 160 pps. in a single burst of one half second, I observed a
gradual change in the outgoing pulse train until, after 200 milliseconds, the output
pulse rate was 80 pps. This effect was observed on several prrparations and, for a
particular preparation was quite stable and rercoducible. It is likely that the
mechanism here is related t¢ potassium accumulation in the periaxonal space
(13,14,26,25,29].

An example that demonstrates the failure of two pulses to propsgate through »
branch is shown for #29-2-80B in Figs. 12 and 13. From Fig. 12a the GR = 2.14 and
the state of health for isolated pulses is displayed in Fig. 12b. Figure 13 shows »
critical value of pulse interval at which the second pulse just fails (upper) or
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Fig. 10. a) Bifurcation. b) Action potentials.
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Fig. 11. a) Dispersion for bifurcation of Fig. 10.
b) Quantum pulse code translation after 200 ms. ot stimulation.
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(b)

Fig. 12. a) Bifurcation. b) Action potentials.

succeeds (lower) to negotiate the bifurcation. The "hump" that appears in record (R)
of the lower photo in Fig. 13 is an artifact of the appearance of the second pulse.
This observation is important because it permits ore to fix the position of the
critical dynamic event that reprcduces the second pulse. This location proceeds as
follows. During the course of these experimeants it was determined that rorduction

velocity (6) depends upon axon diameter (d) and temperature as

Y
6= [K%ZJ [2.03 + 0.078 (Temp - 18.5)) ca/ms. (8)

wvhere d is measured in microns. From (10) one can calculaste the time delay for »
solitary pulse to go from the crotch of the bifurcation to electrode (A); this is
called TA' Likewise TB is calculated as cthe time for a pulse to travel backwarc
from the crotch to electrode (B). The total time delay, TD’ between the seconc
pulse and the hump 1s greater than TA - TB because the second pulse experiences
velocity dispersion as discussed in the previous section. Thus, assuming that
the second pulse is triggered at the bifurcation, one expects



R I ©)

In Fig. 14 is Cisplayed a comparison of time delaye (TD) calculated from (9
with those measured, as in Fig. 13 (lower). Agreement between mneasurements and
calculations impliss the second pulse is vegenerated at the crotch of the bifurca-
tioc. The agreement in Fig. 14 indicates that the critical event took place within
a millimeter of the crotch in these four cases. Since no surgical damage was ob-
ser-ed in this region, it is reasonable to suppose that the second pulse is blocked
at the bifurcation. Furthermore three of the four observations indicated in Fig. 14
show agreement with calculations of the relatiun between GR and pulse interval from

the Hodgkin-Huxley model [30}. See [29] for details.

|29-2—BOB|

20.3°C

50 mv./cm. ——=

O5ms./cm ——e

Fig. 13. The critical time int.erval between two pulses such that
the second pulse just fails (upper) oy just succeeds to pass through the branch.
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Fig. 14. A comparison of calculated and measured time delays (T )
assuning the second is initiated at the bifurcation.

One general statement about my observations is the fellowing: Quantum pulse
cede trwnsformations were only observed in the dispersive region where T < T1 and
R <1,

PULSE INTERACTIONS ON PARALLEL FIBERS

An electrumagnetic analysis of two parallel fibers enclosed within anr in-
sulating sheath leads to a pair of coupled nonlinear diffusion equations [8,31-33).
In the context of 4 FitzHugh-Nagumo approximation [34), these take the form

a- a)vl,xx B “Vz,xx ) F(vl) ) Rl

Ryt

1

v

(1 - a)V aV - F(V,) - P, (10)

2,t 2,xx V1, xx

2,t c(\’2 - sz)



where the small coupling pacrameter is equal to the ratio of external to internal re-

sistance per unit length. One seeks traveliug wave solutions of .he form

Vk(x,t) = Vk(E) = Vk(x -ut); k=1,2 (11)

where u is the propagation speed of two pulses traveling in synchroaism. Under this

constraint, (10) becomes a set nf ordinary differential equations

dv, a2V d2V2
-UEE_=(]-G);E—§'U;E-2-'F(V1)'R1
drR
1 _
'UaT—EVI
av jzv1 d2V2
S Sl £2+ (1- a) —gE-F(VZ) - R, (12)
d d
dr,

where, for conveninece, it has been assumed that b = 0
A solution of (12) will be two pulses, one on each fiber, moving with the same

velocity. Since a << 1, this solution is written as a series

VSV oV, s k=, 2
ulk) = u, + augk) + ... (13)

whbere it is provisionally assumed that solutions of (12) will have different veloc-
ities for k = 1, 2. Eliminating the R's yields

3 2
av ayv av
ko ko ko [ 3
—_—tuy —— =F'(V,. ) + =V =m0 (14)
dE3 o d£2 ko 3! u, ko

and



av av av v
k1 k1 k1 ko ¢
— Xy —Kopw )KL o ) kel y
d§3 o d£2 ko dE ko dz L
2 3 3
_m e o Y% 9V 9V :
42 Y% T T2 T8 (134
ug dg d§ da¢

The perturbation expanson (13) has reduced (12) to the uacoupled nonlinear equations
(14) and the linear equations (15) for the first order corrections. Equations (15}
are uncoupled in the Vkl and the inhomogeneous parts involve only zero order solu-
tions and the first order velocity perturbations. Thus each of (15) can be written

LeVie = fx (15")
for which a solvability condition is

(yk,fk) =0 (16)
where Vi is a solution of

Lka =0 (17)

and LI is the adjoint of _

g un o *he inner product employed in (16). With the

conventional definition

(v,w) & vwdd

[ ]
(17) becomes
R ry F'(V.) My e 0 (18)
— -y, —3- e ;
g ° dez o’ At u, 'k

From solutions of (18) one can compute inner products with the right-hand sides of
(15) and obtain useful expressions for the first order velocity perturbations, the

’



(k)

"1 . To effect this calculation it is convenient to take

F(V) =V - H(V - a) (19)

where H(:) is the Heaviside step function. Chcosinog a = 0.3 and € = 0.1, vko (&)
is the pulse shown in Fig. 15. Comparison with Fig. 10b or 12b shows that this

choice of parameters is physiologically reasonable. The corresponding solution
of (17) is shown in Fig. 16.

It is now assumed that V20 differs from Vlo by a translation 6 in §. Thus

Vyol€) = V (k- &)
y,(8) =y, (& - &) . (20)

The solvability condition (16) requires

-]

3 3
4>V a’v

Nugk) = - / Vk( ;0 + go)d€ (21)
d§ df

-0

where
[+ ] -4
2 2
v av
= 10 _&_ = — 20 &
' ,/ ez "2 Vo) 4= vlE T3 Vzn)“; ' (22)
d£ ‘Jo d{ u ° /

To first order in a, the condition for a traveling wave solution is

u(1l) = u, ¢ uugl) = u(2) = uy + augz)

or

ROENON (23)

In Fig. 17 these first order velocity corrections are plotted as functionc of &,
the displacement of pulse #2 with rospect to pulse #1. Five solutions of (23)
(i.e¢. intersections) are observed, but only three of these (at § = 61, 0, and - 61
denoted by open circles) are stahle in the foliowing senpe. An incresse in &
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Fig. 16. Bolutien of (17)



(implying that pulse #2 advances with respect to pulse #1) cuauses tne speed of pulse
#/1 to become greater than that of pulse #2 which, in turn, causes 6 to decrease. By
a corresponding argument the inversections denoted by closed circles are unstable.
This effect has been confirmed by direct integration of the original pde's (20) [35].
For n weakly coupled fibers, numbered in any order, the relative pulse dis-

placements must satisfy the obvious constraint

Sra * b3t o =0 (24)

For each choice of n - 1 independent §'s, one can calculate n - 1 differences of

the corresponding velocity corrections as

D, = ugi) - ugi’l); i=1,2, ...,0-1 . (25)
(k)
u| /uo
u(Z)/ u(”/u
I =] y 0
ml
—81 81
-20 10 10 ,/ 20
+ +—— —+——*F +—»
| | S
, |
. |
it _ Y ¥
‘\.‘(\ 0.5/
\ /
\ ,’
\\ / O- STABLE
/
/ © - UNSTABLE
/
*
T-¢

Fig. 17. Stability diagram from (23).



Then D = (Dl’ D2, ceny Dn-l) is an n - 1 dimensional vector field in the n - 1

dimensional "&-space' where 6§ = (612, 623, ceny bn-l,n)' Condensed pulse states

are defined as stable zeros of
D=D(6) =0 . (26)

If 51 i+1 denotes the position of a pulse on fiber (i + 1) with respect to that of a
?

pulse on fiber i, stability (in the sense desicribed above) requires

55 >0 (27)

for all i. For more than two coupled fibers (n ¢ 3). this stability condition
is satisfied only for the root of (26) that lies at the origin of O&-space.
Markin [31] has shown that if

on < 1 (28)

this state cun "recruit" additional pulses by stimulat.ng neighboring fibers above
threshold,

THE PULSE ASEEMBLY

The recent reviews by Adey [18,19] indicate a surprising sensitivity of living
tissue to noniorizing electromagnetic fields. Brain tissue, for example, responds
to gradiencts as low as 10-7 volts/cm in the frequency range from 6 to 20 cycles per
second. In speculating about mechanisms for this effect, it is necessary to consider
how such weak fields can be recognized above thermal noise. More precisely one must

suppose

[/(nfuop) Ez] « o 2 kTAf ° (29)

where the square-brackzted term on the left-hand side is the power per unit area
of an incident electromagnetic wave dnd 0 iz the ahsorption cross-section for some

(unknown) dynamical variable. On the right-hiand side, Af is the reciprocal of the
1
=

7

memory time for the dynamical variable. Guided by Fig. 4, one can take Af ~ T
100 lec-l. Then with Hy = 4n x 10“7 henrys/meter, p = 1 ohm-meter, and E = 10°
volt/cm (29) implies



c > 10 3 meter2
> (3 mm)?

What neural mechanism could have such
a large absorption cross-section? Orne
possibility might be the "pulsc as-
sembly" sketched in Fig. 18. Here we
suppose that the longitudinal pulse
locking at time interval T1 (see

Fig. 5) is acting between pulses

and D aund between pulses D and E.
Also we assume a “ransverse pulse
locking, determined by (26), is
acting between pulses A, B. and C

and between pulses E and F.

This mechanism is highly spec-
ulative, but it would deliver in-
formation with an established time
synchronism between the component
pulses as is required by the in-
formation processing mechanisms that
have been proposed fcr Waxman's multi-
plex neuron [16]). Furthermore it is
not inconsistent with the observations
of Scheibel and Scheibel [36] who have
compared stained sections from newborn

and mature cats and conclude that.

During the process of matura-
tion, deudrite shafts have
been found to rearrange them-
selves into bundles in var-
ious parts of the ._.rvous
system including the ventral
horn of the spinal cord,
brain stem reticular core,
aucleus reticularis thalami,
cerebral cortex, and pos-
sibly in basal ganglia and
certain cranial nerve nuclej.
In some cases, the appearance
of bundle complexes seems
closely time-locked to the
initial development of dis-
crete items of motor per-
formance,

Fig.
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Structure of a "pulse assembly."
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